Calculated Properties of OCNS- and Related Species

Pekka Pyykkö* and Nino Runeberg

Department of Chemistry, University of Helsinki, Et. Hesperiankatu 4, 00100 Helsinki, Finland

The presumed, ' $OSCN^{-'}$ structure of the antibacterial agent hypothiocyanite is found to be unstable; the lowest-lying isomer is $OCNS^{-}$ while the $ONCS^{-}$ above it is also stable.

The hypothiocyanite ion, written as 'OSCN^{-',1} has been identified to be an antibacterial agent against *Streptococcus* in both saliva and milk,²⁻⁴ thus preventing the decay of both milk and teeth. This presumed species was found to be remarkably stable to heat in aqueous solutions near pH 7 at low concentration, up to about 0.1 mmol dm^{-3.2}

The structure and properties of the ion are, however, unknown. Chemical Abstracts classify it as 'cyanosulphoxy-late,' CNOS⁻.

We therefore extend our earlier study on the second row A=B=C=D systems⁵ to the third row element sulphur. The Hartree–Fock- or Møller–Plesset-level 6-31G* calculations

were performed using Gaussian 90. No stable structure was found for the OSCN⁻ structure; the S–C bond breaks at the HF level. If the electronegative sulphur and oxygen atoms occupy the ends then short bonds and low energies are found. The structure OCNS⁻ has the lowest energy at both HF and MP2 levels. The ONCS⁻ one lies (186 kJ mol⁻¹) above it at the HF level. All vibrational frequencies for both structures were positive. Note that these two structures are the monothio analogues of the ion OCNO⁻, considered in ref. 5 and observed in the gas phase by mass spectroscopy.⁶ It is interesting to ask whether the inorganic¹ or enzymatic^{2–4} reactions are able to isomerize thiocyanate to the lowest,

Species ABCD-	Method	Energy	A–B	B-C	C-D	
OCNS-	HF	-564.70713	119.5	115.2	173.0	
	MP2	-565.30752	122.5	118.9	170.7	
ONCS-	HF	-564.63619	126.4	113.6	168.9	
	MP2	-565.25238	125.8	119.0	166.6	
SCNS-	HF	-887.37106	165.8	114.2	170.5	
SCCS2-	HF	-870.60970	173.4	120.6	173.4	

Table 1 Calculated total energies (au) and geometries (pm)

Table 2 Calculated vibrational frequencies at HF level

Species	ν_1	ν_2	ν_3	ν_4	ν_5
OCNS-	123	535	653	1496	2622ª
ONCS-	264	556	609	1152	2618 ^b
SCNS-	170	450	529	891	2506 ^a
SCCS ²⁻	207	456	514	903	2363a

 a $\pi(u)$, $\sigma(g)$, $\pi(g)$, $\sigma(u)$, $\sigma(g)$. b π , π , σ , σ , σ .

OCNS- structure or just oxidize it to ONCS-. The OCSNstructure lies much higher and develops a long S-N bond. The remaining eight isomers would have carbon at an end and/or oxygen in the middle and were neglected. We include in Tables 1 and 2 the dithio species SCNS- and SCCS2-, the latter being the analogue of the known OCCO^{2-.5}

The present results support the existence of the uncharacterized hypothiocyanite ion, but suggest that its structure is OCNS- or, possibly, ONCS- while the traditional, 'OSCN-' structure is ruled out as entirely unstable.

The calculations were carried out on a Cray X-MP EA/432 computer at the Centre for Scientific Computing at Espoo, Finland. We are particularly grateful to Professor Alan L. Balch who brought refs. 1-4 to our attention.

Received, 4th January 1991; Com. 1/00061F

References

- 1 I. R. Wilson and G. M. Harris, J. Am. Chem. Soc., 1960, 82, 4515.
- H. Hoogendoorn, J. P. Piessens, W. Scholtes and L. A. Stoddard, *Caries Res.*, 1977, 11, 77.
- 3 V. M. E. Marshall and B. Reiter, J. Gen. Microbiol., 1980, 120, 513.
- 4 T. M. Aune and E. L. Thomas, Eur. J. Biochem., 1977, 80, 209.
- 5 P. Pyykkö and N. Runeberg, J. Mol. Struct. (Theochem), in the press.
- 6 R. J. Waugh, P. C. H. Eichinger, R. A. J. O'Hair, J. C. Sheddon, J. H. Bowie and R. N. Hayes, Rapid. Commun. in Mass Spectr., 1989, 3, 151.